12.1 Introduction- ~ 559

Figure 12.83 Two transactions; one modified while the other reads.
Transaction Ts Transaction T
‘Read(A) Sum := 0)
A:= A - 100 Read(A)
Write(A) Sum := Sum + A
Read(B) Read(B)
B:=B + 100 Sum .= Sum + B
.Write(B) Write(Sum)

Consider the transactions of Figure 12.5. Suppose A and B represent some data-
items containing integer valued data, for example, two accounts in a bank (or a
quantity of some part X in two different locations, etc.). Let us assume that trans-
action Ts transfers 100 units from A to B. Transaction T is concurrently running and
it wants to find the total of the current values of data-items A and B (the sum of the
balance in case A and B represent two accounts, or the total quantity of part X in the
two different locations, etc.).

Figure 12.6 gives a possible schedule for the concurrent execution of the trans-
actions of Figure 12.5 with the initial value of A and B being 500 and 1000, respec-
tively. We notice from the schedule that transaction T uses the value of A before
the transfer was made, but it uses the modified value of B after the transfer. The
result is that transaction Te erroneously determines the total of A and B as being 1600
instead of 1500. We can also come up with another schedule of the concurrent exe-

Figure 12.6 Example of inconsistent reads.
Schedule Transaction Ts Transaction Tg Value of Database items
A B Sum
Read(A) Read(A) 500 1100 —
Sum :=0 Sum := 0 0
T | Read (A) Read (A)
i A:=A - 100 A:=A - 100 ! h
m | Write(A) Write(A) 400 k
e Sum := Sum + A Sum := Sum + A 500
Read(B) Read(B) '
B:=B + 100 B:=B + 100
Write(B} ‘Write(B) 1100
Read(B) Read(B; ’
Sum := Sum + B Sum := Sum + B
‘L Write(Sum) Write(Sum) : 600

Chapter 12 Concurrency Management

In effect, the division of a transaction into interdependent transactions run seri-
ally in the wrong order would give erroneous results. Furthermore, these interdepen-
dent transactions must not be run concurrently, otherwise the concurrent execution
will lead to results that could be incorrect again and not agree with the result obtained
by any serial execution of the same transactions. It is a logical error to divide a
single set of operations into two or more transactions. We assume hereafter that
transactions -are semantically correct.

Serializability

Let us reconsider the transactions ot rigure 12.3. We assume that these transactions
are independent. An execution schedule of these transactions as shown in Figure 12.7
is called a serial execution. In a serial execution, each transaction runs to completion
before any statements from any other transaction are executed. In Schedule A given
in Figure 12.7a, transaction T; is run to completion before transactien T, is executed.
In Schedule B, transaction T, is run to completion before transacton T is started. If
the initial value of A in the database were 200, Schedule A would result in the value
of A being changed to 231. Similarly, Schedule B with the same mitial value of A

would give a result of 230.
This may seem odd, but in a shared environment, the result obtamned by inde-

_pendent transactions that modify the same data-item always depends on the order in

which these transactions are run; and any of these results is considered to be correct.

Figure 12.7 Two serial schedules.

Schedule A Transaction T; . Transaction T,
Read(A) Read(A)

I | A:=A+ 10 A=A+ 10

i Write(A) Write(A)

m | Read(A) Read(A)

e A:=A*11 A:=A*11
Write(A) Write(A)

(@

Schedule B Transaction T; Transaction T,
Read(A) Read(A)

T | A:=A*1.1 A:=A*11

i Write(A) Write(A)

m |’ Read(A) Read(A)

e A£=A-f-10 A=A+ 10
Write(A) Write(A)

)

12.2 Serializability " 563

v - T

If there are two transactions and if they refer to and use distinct data-items, the
result obtained by the interleaved execution of the siatements of these transactions
would be the saine regardless of the order in which these statements are executed
(provided there are no other concurrent transactions that refer to any of these data-
items). In this chapter, we assume that the concurrent transactions share some data-
items, hence we are interested in a correct orderinig of execution of the statements of
these transactions.

A nonserial schedule wherein the operations from a set'of concurrent trans-
actions are interleaved is considered to be serializable if the execution of the opera-
tions in the schedule leaves the database in the same state as some serial execution
of these transactions. With two transactions, we can have at most two distinct serial
schedules, and starting with the same state of the database, each of these sérial sched-
ules could give a different final state of the database. Starting with an initial value of
200 for A, the serial schedule illustrated in Figure 12.7a would give the final value
of A as 231, and for the serial schedule illustrated in part b the final value of A would
be 230. If we have n concurrent transactions, it is possible to have n!, where n! =
n*(m— 1)*(n — 2)*. . . *3=*2x*] distinct serial schedules, and possibly that
many distinct resulting modifications to the database. For a serializable schedule, all
we require is that the schedule gives a result that is the same as any one of these
possibly distinct results. ’

When n transactions are run concurrently and in an interleaved manner, the

. number of possible schedules is much larger than n!. We would like to find out if a
!. given interleaved schedule produces the same result as one of the serial schedules. If
‘the answer is positive, then the given interleaved schedule is said to be serializable.

Allumacnonsmoonectmﬂwmwifnym*of;
executed by itself on a cons:swatm Mm

Anysenalexecutionofﬂwtransacuommmow!m“e eI
consistency of the database; mmmmmmm
the transactions are logically correct and thﬂt 8O tWO mwﬁm:

The given interleaved execution of these transactions is said to be mhwb

Definition: Serializable Schedule: .
Given an interleaved ’execimon ofasetofn
conditions hold for each transaction in the at:

consistent.
. interdependent).
\

it produces the same result as some serial execution of the transactions. S

Since a serializable schedule gives the same result as some serial schedule and
since that serial schedule is correct, then the serializable schedule is also correct.
Thus, given any schedule, we can say it is correct if we can show that it is serializ-
able.

Algorithm 12.1 given in Section 12.2.2 establishes the serializability of an ar-
bitrarily interleaved execution of a set of transactions on a database. The algorithm
does not consider the nature of the computations performed by a transaction nor the

Chapter 12 Concurrency Management

Algorithm
12.1

Input:
Output:

transactions T, and T,;. In the precedence graph there is an edge from T, to T3 as
well as an edge from T ; to Ty,. The edge T3 to Ty, is included because T, executes
a write operation after T,; executes a write operation for the same database item A.
The edge Ty, to Ty; is included because T3 executes a write operation after T,
executes a read operation for the same database item A. We see that the precedence

graph has a cycle, since we can start from one of the nodes of the graph and, follow-
ing the directed edges, return to the starting node.

A precedence graph is said to be acyclic if there are 110 cycles in the graph. The
graph of Figure 12.8b has no cycles. The graph of Figure 12.9b is cyclic, since it
has a-cycle.

The precedence graph for serializable schedule S must be acyclic, hence it can
be converted to a serial schedule. To test for the serializability of the arbitrary sched-
ule S for transactions T;, . . . , Ty we convert the schedule into a precedence graph
and then test the precedence graph for cycles. If no cycles are detected, the schedule
is serializable; otherwise it is not. If there are n nodes in the graph for schedule S,
the number of operations required to check if there is a cycle in the graph is propor-
tional to n’.

12.2 Serializability 567

12.2.2 serializability Algorithm: Read-before-Write Protocol

In the read-before-write protocol we assume that a transaction will read the data-
_ item before it modifies it and after modifications, the modified value is written back
to the database. In Algorithm 12.1, we give the method of testing whether a schedule
is serializable. We create a precedence graph and test for a cycle in the graph. If we
find a cycle, the schedule is nonserializable; otherwise we find a linear ordering of
the transactions.
In Examples 12.1 and 12.2 we illustrate the application of this algorithm.

Example 12.1 Consider the schedule of Figure A. The precedence graph for this schedule
is given in Figure B. The graph has three nodes corresponding to the three
transactions T4, Tys, and Tys. There is an arc from T4 to T,s because T,
writes data-item A before T,s reads it. Similarly, there is an arc from Ts to
T,¢ because T,s writes data-item B before T,e reads it. Finally, there is an
arc from Tq to T4 because T,¢ writes data-item C before T4 reads it. The
precedence graph of Figure B has a cycle formed by the directed edges from.
T, to Tys, from T,s to T, and from T,¢ back to T,4. Hence, the schedule
of Figure A is not serializable. We cannot execute the three transactions
serially to get the same result as the given schedule.

Figure A An execution schedule involving three transactions.

Schedule Transaction T,; Transaction T,s Transaction T\¢

Read(A) Read(A;

Read(B) Read(B)
A:= fi(A) A:= fi(A)

Read(C)

B := fB) B := fo(B)
Write(B) Write(B)
C := f4(C)

Write(C)

Write(A) Write(A)

Read(B)

Read(A) Read(A)
A= fy(A) A := fyA)
Read(C) Read(C) .
Write(A) ‘ Write(A)
C:=f{C) C:= f5(C)

Write(C) Write(C)

B := f¢(B) B := fi(B)
v Write(B) - Write(B)

03—-—]

870

Chipter 12 Concurrency Management

changed between the time of reading and of writing. In the multiversion technique,
a data-item is never written over; each write operation creates a new version of a
data-item. Many versions of a data-item exist and these represent the historical ‘evo-
lution of the data-item. A transaction sees the data-item of its own epoch. Conflicts .
are resolved by rollback of a transaction that is too late to write out all values from
its epoch. We examine each of these concurrency control schemes in the following
sections. The problem of deadlock, which is possible in some of these schemes and/ .

_or their modifications, is discussed in Section 12.8.

Locking Scheme

From the point of view of locking, a database can be considered as being made up
of a set of data-items. A lock is a variable associated with each such data-item.
Manipulating the value of a lock is called locking. The value of a lock variable is
used in the locking scheme to-control the concurrent access and manipulation of the
associated data-item. Locking the items being used by a transaction can prevent other
concurrently running transactions from using these locked items. The locking is done
by a subsystem of the database management system usually called the lock manager.

So that concurrency is not restricted unnecessarily, at least two types of locks
are defined: exclusive lock and shared lock.

Exclusive lock: The exclusive lock is also called an update or a write lock. The
intention of this mode of locking is to provide exclusive use of the data-item to one
transaction. If a transaction T locks a data-item Q in an exclusive mode, no other
transaction can access Q, not even to read Q, until the lock is released by trans-
action T.

Shared lock: The shared lock is also called a read lock. The intention of this

‘mode of locking is to ensure that the data-item does not undergo any modifications

while it is locked in this mode. Any number of transactions can concurrently lock
and access a data-item in the shared mode, but none of these transactions can modify
the data-item. A data-item locked in a shared mode cannot be locked in the exclusive
mode until the shared lock is released by all transactions holding the lock. A data-
item locked in the exclusive mode cannot be locked in the shared mode until the
exclusive lock on the data-item is released.

The protocol of sharing is as follows. Each transaction, before accessing a ama-
item; requests that the data-item be locked in the appropriate mode. If the data-item
is not locked, the lock request is honored by the lock manager. If the data-item is
already locked, the request may or may not be granted, depending on the mode of
locking requested and the current mode in which the data-item is locked. If the mode

‘of locking requested is shared and if the data-item is already locked in the shared

mode, the lock request can be granted. If the data-item is locked in.an exclusive
mode, then the lock request cannot be granted, regardless of the mode of the request.
In this case the requesting transaction has to wait till the lock is released.

The compatibility of a lock request for a data-item with respect to its current
state of locking is given in Figure 12.10. Here we are assuming that the request for
locking is made by a transaction not already holding a lock on the data-item.

If transaction T, makes a request to lock data item A in the shared mode and if
A is not locked or if it is already locked in the shared mode, the lock request is
granted. This means that a subsequent request from ‘another transaction, T,, to lock

12.4 Locking Scheme 71

Figure 12.10 Compatibility of locking.

Current state of locking of data-item

Unlocked Shared Exclusive
Unlock yes yes
Lock mode of -
request Shared yes yes no
Exclusive yes no no

data-item A in the exclusive mode would not be granted and transaction T, will have
to wait until A is unlocked. While A is locked in the shared mode, if transaction T,
makes a request to lock it in the shared mode, this request can be granted. Both T,
and T, can concurrently use data-item A.

If transaction T, makes a request to lock data-item A in the shared mode and if
A is locked in the exclusive mode, the request made by transaction T, cannot be
granted. Similarly, a request by transaction T, to lock A in the excluswve mode while
it is already locked in the exclusive mode would also result in the request not being
granted, and T, would have to wait until the lock on A-is released.

From the above we see that any lock request for a data-item can only be granted
if it is compatible with the current mode of locking of the data-item. If the request
is not compatible, the requesting transaction has to wait until the mode becomes
compatible.

The releasing of a lock on a data-item changes its lock status. If the data-item
was locked in an exclusive mode, the release of lock request by the transaction
holding the exclusive lock on the data-item would result in the data-item being un-
locked. Any transaction waiting for a release of the exclusive lock would have a
chance of being granted its request for locking the data-item. If more than one trans-
action is waiting, it is assumed that the lock manager would use some fair scheduling
technique to choose one of these waiting transacuons.

If the data-item was locked in a shared mode, the release of lock request by the
transaction holding the shared luck on the data-item may not result in the data-item
being unlocked. This is because more than one transaction may be holding a shared
lock on the data-item. Only when the transaction releasing the lock is the only trans-
action having the shared lock does the data-item become unlocked. The lock manager
may keep a count of the number of transactions holding a shared lock on a data-
item. It would increase this value by one when an additional transaction is granted a
shared lock and decrease the value by one when a transaction holding a shared lock
releases the lock. The data-item would then become unlocked when the number of
transactions holding a shared lock on it becomes zero. This count could be stored in
an appropriate data structure along with the data-item but it would be accessible only
to the lock manager.

The lock manager must have a priority scheme whereby it decides whether to
allow additional transactions to lock a data-item in the share-mode in the following
situation:

® The data-item is already locked in the shared mode.

® There is at least one transaction waiting to lock the data-item in the exclusive
mode. '

574

. Chapter 12 Concurrency Management

ﬂ.un 12.14 A possibie solution to the inconsistent read problém.

12.41

Schedule Transaction Ty Transaction T,
Lockx(Sum) Lockx(Sum)
Sum := 0 Sum := 0
Locks(A) Locks(A)
Read(A) Read(A)
Sum := Sum + A Sum := Sum + A
T Locks(B) Locks(B)
i Read(B) Read(B)
m Sum := Sum + B Sum := Sum + B
e Write(Sum) Write(Sum)
Unlock(B) Unlock(B)
Unlock(A) Unlock(A)
Unlock(Sum) N Unlock(Sum)
Lockx(A) Lockx(A)
Read(A) Read(A)
A:=A - 100 A:=A - 100
Write(A). Write(A)
Lockx(B) Lockx(B)
Unlock(A) Unlock(A)
Read(B) Read(B)
B:= B + 100 B:=B + 100
Write(B) Write(B)
-w Unlock(B) Unlock(B)

some data-items locked even though the transactions no longer need these items. This

extended locking forces a serialization of the two transactions and gives correct re-
sults.’

Two-Phase Locking

The correctness of the schedules of Figures 12.14 and 12.15 and of the transactions
in Figure 12.13 lead us to the observation that both these solutions involve trans-
actions whose locking and unlocking operations are monotonic, in the sense that all
locks are first acquired before any of the locks are.released. Once a lock is released,
no additional locks are requested. In other words, the release of the locks is delayed
until all locks on all data-items required by the transaction have been acquired.

This method of locking is called two-phase locking. It has two phases, a grow-
ing phase wherein the number of locks increase from zero to the maximum for the
transaction, and a contracting phase wherein the number of locks held decreases
from the maximum _to zero. Both of these phases are monotonic; the number of locks

_are only inyreasing in the first phase and decreasing in the second phase. Once a

12.4 Locking Scheme

Figure 12.15

Another solution to the inconsistent read problem.

57¢

Schedule Transaction T, Transaction T,
Lockx(A) Lockx(A)
Read(A) Read(A)
A:=A - 100 A:=A - 100
Write(A) Write(A)

T Lockx(B) Lockx(B)

i Unlock(A) Unlock(A)

m Read(B) Read(B)

e B:=B + 100 B:=B + 100
Write(B) Write(B)
Unlock(B) Unlock(B)
Lockx(Sum) LockxSum)
Sum := 0 Sum := 0
Locks(A) Locks(A)
Read(A) Read(A)
Sum := Sum + A Sum := Sum + A
Locks(B) Locks(B)
Read(B) Read(B)
Sum := Sum + B Sum := Sum + B
Write(Sum) Write(Sum)
Unlock(B) Unlock(B)
Unlock(A) Unlock(A)

v Unlock(Sum) Unlock(Sum)

transaction starts releasing locks, it is not allowed to request any further locks. In
this way a transaction is obliged to request all locks it may need during its life before
it releases any. This leads to a possible lower degree of concurrency.

The two-phase locking protocol ensures that the schedules involving transactions
using this protocol will always be serializable. For instance, if S is a schedule con-
taining the interleaved operations from a number of transactions, T, Ty, . .., T,
and all- the transactions are using the two-phase locking protocol, schedufe S is seri-
alizable. This is because if the schedule is not serializable, the precedence ‘graph for
S wiil have a cycle made up of a subset of {T;, T,, . . . , T,}. Assume the cycle
consists of T, > T, — T, — . . . T, — T,. This means that a lock operation by T,
is followed by an unlock operation by T,; a lock operation by T, is followed by an
unlock operation by Ty, . . . , and finally a lock operation by T, is followed by an
unlock operation by T,. However, this is a contradiction of the assertion that T, is
using the two phase protocol. Thus the assumption that there was a cycle in the
precedence graph is incorrect and hence S is serializable.

The transactions o Figure 12.13 use the two-phase locking protocol, and the
schedules derived from the concurrent execution of these transactions given.w Fig-
ures 12.14 and 12.15 are serializable. However, the transaetions of Figure 12.11 do
not follow thetwo-phase locking protocol and the schedule of Figure 12.12 is not
serializable.

\\

578

Chapter 12 Concurrency Management

the intention share mode to indicate that the lower level is being locked in a share
mode. Other transactions can access the node and all its lower levels, including the
subtree being accessed by T,; no transaction, however, can modify any portif)n of
the database rooted at the node that was locked by T, in the intention share mode. If
transaction T, intends to lock the lower level in the exclusive or share mode, then
the ancestor is locked in the intention exclusive mode to indicate that the lower
level is being locked in an exclusive or share mode. Another concurrent transaction,
say Ty, needing to access any portion of this hierarchy in the exclusive or share mode
can also lock thisinode in the intention exclusive mode. If T, needs exclusive or
share access to that portion of the subtree not being used by transaction T,, it will
place appropriate locks on it and can run concurrently with T,. However, if T, needs
access to any portion of the subtree locked in the exclusive mode by T,, then the
explicit exclusive locks on these nodes will cause T, to wait until T, releases these
explicit exclusive locks.

The intention lock locks a node* to indicate that the lower level nodes are being
locked either in the share or the exclusive mode, but it does no implicit locking of
lower levels. Each lower level has to be locked explicitly in whichever mode required
by the transaction. This adds a fairly large overhead if a transaction needs to access
a subtree of the database and modify only a small portion of the, subtree rooted at the
intentionally locked node. The share and intention exclusive mode of locking s
thus introduced. The share and intention exclusive mode differs from the other form
of intention locking in sc far as it implicitly locks all lower level nodes as well as
the node in question. This mode allows access by other transactions to share that
portion of the subtree not exclusively locked and gives higher concurrency than
achievable with a simple exclusive lock. This ayoids the overhead of locking the root
node and all nodes in the path leading to the subtree to be modified in the intention
exclusive mode, followed by locking the subtree to be modified in the exclusive
mode. It is replaced by locking the root node in the share and intention exclusive
mode (which will lock all descendants implicitly in the same mode), followed by
locking the root node of the subtree to be modified in the exclusive mode.

We summarize below the possible modes in which a node of the database hier-
archy could be locked and the effect of the locking on the descendants of the node.
Figure 12.17 gives the relative privilege of these modes of locking. The exclusive
mode has the highest privilege and the intention share mode has the lowest privilege.

S or shared lock: The node in question and implicitly all its descendants are
locked in the share mode; all these nodes, locked explicitly or implicitly, are acces-
sible for read-only access. No transaction can update the node or any of its descen-
dants when the node is locked-in the shared mode.

X or exclusive lock: The node in question and implicitly all its descendants are
exclusively locked by a single transaction. No other transaction can concurrently
access these nodes.

IS or intention share: The node is locked in the intention share mode, which
means that it or its descendants cannot be exclusively locked. The descendant of the
node may be individually locked in a shared or intention shared mode. The descen-
dants of the node that is locked in the IS mode are not locked implicitly.

IX or intention exclusive: The node is locked in an intention exclusive mode.
This means that the node itself cannot be exclusively locked; however, any of the
descendants, if not already locked, can be locked in any of the locking modes. The
descendants of the node that is locked in the IX-mode are not iocked implicitly.

12.4 Locking Scheme 579

Figure 12.17 Relative privilege of the locking modes.

B 975 ¢,

SIX or shared and intention exclusive: The node is locked in the shared and
intention exclusive mode and all the descendants are implicitly locked in the shared
mode. However, any of the descendants can be explicitly locked in the exclusive,
intention exclusive, or shared and intention exclusive modes.

MANG2: oz

Relative Privilege of the Various Locking Modes

Figure 12.17 gives the relative privilege of the various modes of locking. The exclu-
sive mode has the highest privilege: it locks out all other transactions from the por-
tion of the database that is rooted at the node locked in the exclusive mode. All
descendants of the node are implicitly locked in the exclusive mode. The intention
share mode has the lowest privilege. The share mode is not comparable with the
intention exclusive mode.

The advantage of the intention mode locking is that the lock manager knows
that the lower level nodes of a node that is intentionally locked are or are being
locked without having to examine all the lower level nodes. Furthermore, using the
compatibility matrix shown in Figure 12.18 and discussed below, the lock manager
can ascertain if a request for a lock can be granted.

Compatibility Matrix

Considering all the modes of locking described above, the compatibility between the
current mode of locking for a node and the request of another transaction for locking
the node in a given mode are given in Figure 12.18. The entry yes indicates that the
request will be granted and.the transaction can continue. The entry no indicates that
the request cannot be granted and the requesting transaction will have to wait.

Chapter 12 Concurrency Management

12.4.5

not be two phase and they are allowed to unlock an item before locking another item.
The only requirement is that the transaction must have a lock on the parent of the
node being locked and that the item was not previously locked by the transaction.
Consider the database of Figure 12.19. A transaction, for instance T,, can start
off by locking the entire database. Then it proceeds to lock Portion;, Record Type,
and Record Type,. At this point it unlocks the database and then locks record occur-
rences R, and R,;, followed by unlocking Portion;, and Record Type,. Another
transaction, T, can then proceed by first locking Record Type, followed by locking
record occurrences Ry,. The first transaction can now lock rqcord occurrence R;.
The advantage of the tree-locking protocol over the two-phase locking protocol
is that a data-item can be released earlier by a transaction if the data-item (and of
course, any of its yet unlocked descendants in the subtree rooted at the data-item) is
not required by the transaction. In this way a greater amount of concurrency is fea-
sible. However, since a descendant is not locked by the lock on a parent, the numnber
of locks and associated locking overhead, including the resulting waits, is increased.

DAG Database Storage Structure

The use of indexes to obtain direct access to the records of the database causes the
hierarchical storage structure to be converted into a directed acyclic graph (DAG)
as shown in Figure 12.20. The locking protocol can be extended to a DAG structure;
the only additional rule is that to lock a node in the IX, SIX, or X modes, all the
parents of the node have to be locked in a compatible mode that is at least an IX
mode. Thus, no other transaction can get a lock to any of the parents in the S, SIX,
or X modes. This is illustrated in Example 12.5.

Example 12.5 To add a record occurrence to the Record Type;, which uses an index, for

direct access to the records, the sequence of locking is as follows: (1) lock
the database in the IX mode, (2) lock Portion, in the IX mode, (3) Inck
Record Type, and index, in the X mode. With this method of locking, the
phantom phenomenon is avoided at the expense of lower concurrency.. B

Figure 12.20 Sample DAG database storage structure.

7~ ’
Ry RoRj3RRisRige o o Ryp Ry Ryze o 0 Rij R Rz Rige o o

12.5 Timestamp-Based Otder 583

As in the case of two-phase locking, deadlock is possible in the locking scheme
using hierarchical granularity of locking. Additional details regarding references
to techniques to reduce and eliminate such deadlock are cited in the bibliograp
notes.

Timestamp-Based Order

action by assigning to each transaction a unique nondecreasing number. The usual
value assigned to each transaction is the system clock value at the start of the trans-
action, hence the name timestamp ordering. A variation of this scheme that is used
1n a distributed environment includes the site of a transaction appended to the system-
wide clock value. This value can then be used in deciding the order in which the
conflict between two transactions is resolved. A transaction with a smaller timestamp
value is considered to be an ‘‘older’’ transaction than another transaction with a
larger timestamp value.

The senalizability that the system enforces is the- chronological order of the
timestamps of the concurrent transactions. If two transaction T; and T; with the time
stamp values t; and t; respectively, such that t; < t;, are to run concurrently, then the
schedule produced by the system is equivalent to running the older transaction T;
first, followed by the younger one, T;.

The contention problem between two transactions in the timestamp ordering sys-
tem is resolved by rolling back one of the conflicting transactions. A conflict is said
to occur when an older transaction tries to read a value that is written by a younger
transaction or when an older transaction tries to modify a value already read or writ-
ten by a younger transaction. Both of these attempts signify that the older transaction
was “‘too late’’ in performing the required read/write operations and it could be using
values from different *‘generations’” for different data-items.

In order for the system to determine if an older transaction is processing a value
already read by or written by a younger transaction, each data-item has, in addition
to the value of the item, two timestamps: a write timestamp and a read timestamp.
Data-item X is thus represented by a triple X: {x, W,, R,} where each component of
the triple is interpreted as given below: -

x, the value of the data-item X

W,, the write timestamp value, the largest timestamp value of any transaction that was
allowed to write a value of X.

R,, the read timestamp value, the largest timestamp value. of any transaction that was
allowed to read the current value X.

Now let us see how these timestamp values find their way into the data structure
of a data-item and how all these values are modified. A transaction T, with the
timesteamp value of t, issues a read operation for the data-item X with the values
{x, Ws, R}

® This request will succeed if t, = W, since transaction T, is younger than the
transaction that last wrote (or modified) the value of X. Transaction T, is

586 Chapter 12 Concurrency Management

After step 5 A: 400, W, ty, B: 500, W,, R,
After step 7 A: 300, ty, tyy B: 500, W,, R,
After siep 8 A: 300, ty, ty; B: 500, Wy, ts,
After step 1C ~ the value displayed will be 900

After step 12 A: 300, tay, t,; B: 500, Wy, ty;
After step 14 A: 300, ty3, tyy B: 600, ty3, ty;

After step 14 the value displayed will be 900 W

In the following example we illustrate a scnedule where the older transaction is

rolled back.
Example 12.7 Figure F Senalizablg schedule produced after a rollback.

Step Schedule Transaction T, Transaction T,
| Sum := 0 " Sum:=0
2 Sum .= 0 Sum := 0
3 Read(A) Read(A)
4 A:=A-100 A:=A - 100
5 Write(A) " Write(A)
6 Read(A) Read(A)* causes a rollback of T,
7 Sum := Sum + A Sum := Sum + A
8 Read(B) Read(B)
9 B:=B+ 100 'B:= B + 100
10 Write(B) Write(B)
11 Sum := Sum + B Sum := Sum + B
12 Show(Sum) Show(Sum)
13 Sum:=0 Sum := 0 with a timestamp t,,'(> t,;)
14 Read(A) Read(A)
15 Sum:= Sum + A Sum:= Sum + A
16 Read(B) Read(B)
17 Sum := Sum + B Sum:= Sum + B
18 Show(Sum) Show(Sum)

Consider the schedule shown in Figure F. Transaction Ty, is rolled back and
rerun after step 6. When it is rolled back, a new timestamp value t,," which
would be greater than t,3, is assigned to it. The sequence of changes is given

below:
Initially A: 400, W, R, B: 500,W,,R,
After step 3 A: 400, W,, b, B: 500,W,,R,
After step 5 A: 300, tzg, ty B: SOO,W.,,R.,
After step 6 A 3%, ts, t3 B: 500,W.,,R.,*

(*causes a rollback of T,, which would be reassigned a new
timestamp (t2,', > t3) and would be reexecuted)

12.5 Timestamp-Based Order 587

After step 8 A: 300, 13, ty B: 500.Wy.t:;
After step 10 A: 300, ty3, tos B: 600.153. t3
After step 12 the value displayed will be 900

After step 14 A: 300, ty, ty' B: 600.ts3. ts3
After step 16 A: 300, ty, t' B: 600.ts3. tss'
After step 18 the value displayed will be 900 B

Example 12.8 below illustrates a case where the write operation of a transaction
could be ignored. '

Example 12.8 In the example illustrated in Figure G, we have three transactions. Ts,. Ts.
and T, with timestamp values of ty4, tys, and tse respectively (ta; < tas <
ty). Note that transactions T, and T, are write-only with respect to- data-
item B.

-Figure G Another serializable schedule.

Step Schedule Transaction T,; Transaction T»s Transacti

1 Read(A) Read(A)

2 A:=A+1 A:=A+1

3 Write(A) Write(A)

4 .Read(C) Read(C)

S C:=C*3 C:=C*3

6 Read(C) Read(C)

7 Write(C Write(C)* causes a rollback

of transaction T,

8 C:=C*2 C:=C*2

9 Write(C) Write(C)

10 B:= 100 B:= 100

11 Write(B) Write(B)

12 B:= 150 B:= 150

13 Write(B) Write(B)** causes the write operation to

be ignored

14 Read(C) Read(C,

15 C:=C*3 C:=C*3

16 Write(C) Write(C)
Initially A: 10, W,, R, B: 50, W, Ry C:5, W, R,
After step 1 A 10, W, ty, B: 50, Wy, R, C:5 W, R
After step 3 A: 11, ty, ty B: 50, W, R, C:5, W, R,
After step 4 A 11, ty, tyy B: 50, W,, Ry C:5, W, ty
After step S A1, ty, by B: 50, Wy, R, C:5, W, ty

Chapter 12 Concurrency Management

The write timestamp of a version of a data-item is the timestamp value of the
transaction that wrote the version of the data-item. In other words, a value of the
data-item X with the write timestamp value W, was written by a transaction with a
timestamp value of W,. Note, that here we are ignoring the time lapse from the start
of the transaction to the generation of the new version. The timestamps are in reality
pseudotimes and a nondecreasing counter can be used instead of a timestamp with
similar results.

The read- timestamp of 4 version of a data-item is the timestamp value of the
moct recent transaction that successfully read the version of the data-item. A version
of the data-item with the read timestamp of R, was read by a transaction with a
timestamp value of R,. The read timestamp value is the same as the time of modifi-
cation of the value of the data-item, if another version of the data-item exists; oth-
erwise it remains the most recent version of the data-item. This is because a new’
version usually will not be created without first reading the current most recent ver-
sion.

If a transaction T; with a time stamp value of t; writes a value x; for the kth
version of a data-item X, then the kth version of X will have the value x;. W,,, the
write timestamp value, and R,,, the read timestamp value of X, will both be initial-
ized to t;. »

A transaction needing to read the value of data-item X is directed to read that
version of X that was the most recent version, with respect to the timestamp crdering
of the transaction. We call this version the relative-most-recent version. Thus, if a
transaction T, with the timestamp value of t, needs to read the value of data-item X,
it will read the version X; such that W,; is the largest write timestamp value of all
versions of X that is less than or equal to t,. The read timestamp value of version X;
of X, read by transaction T,, is updated to t, if t, > R,;.

A transaction T,, wanting to modify a data-item value will first read the relative-
most-recent version X, of data-item X. When it tries to write a new value of X, one
of the following actions will be performed:

® A new version.of X, e.g., version X,-’, is created and stored with the value x;
and with the timestamp values of W,;" = R,;’ = t,, if the current value of
R,; = t,. This ensures that transaction T, was the most recent transaction to
read the value of version X;, and no other transaction has read the value that
was the basis of updating by T,.

® Transaction T, is aborted and rolled back if the current value of R,; > t,. The
reason is that another younger transaction has read the value of version X; and
may have used it and/or modified it. Transaction T, was too late and it should

" try to rerun to obtain the current most recent version of the value of X.

It is easy to see that the value of the write timestamp is the same as the time of
generation of a new version of the value of a data-item, and the read timestamp value
is the same as the time of modification of the value of the data-item.

A transaction T, with a timestamp value of t,, writing a new version of a data-
item X without first reading, creates a new version of X with the write timestamp
and read timestamp values of t,.

It can be shown that any schedule generated according to the above requirements .
is scrializable, and the result obtained by a set of concurrent transactions is the same
as that obtained by some serial excecution of the set with a single version of the data-
items.

12.7 Multiversion Techniques 593

Example 12.10 Consider the schedule given in Figure I for two concurrent transactions T,
and Ty; of Figure 12.21. Suppose the multiversion technique is used for
concurrency control. Assume initially that a single version exists for data-
items A and B with their initial values being:

A: {{ 400, W,, R.}} and B: {{ 500, Wy, Ry}

Transaction Ty, has a timestamp value of ty,; transaction T,; has a times-
tamp value of t,,.

t < thy, Wy <itz, Ry <y, Wy, <y, Ry <t
The modifications after the following steps are:

After step 3 A: {{400, W,, t,3}}
B: {500, W,, Ry}}

After step S A: {{400, W,, t,3}, {300, ty3, t;a}}
B: {{500, W, R,}}

After step 6 A: {{400, W,, b5}, {300, t3, ty}} MANCALORE
B: {{ 500, Wy, Ry}} : 575 001,

After step 8 A: {{400, W,, t;3}, {300, t,;, t53}}
B: {{500, Wy, t}}

After step 10 the value shown by T,, is 900
After step 12 A: {{400, W,, t53}, {300, t3, t3}}
B: {{500, W,, tx}}

After step 14 A: {{400, W,, t;3}, {300, t,3, t3}}
B: {{ 500, Wy, t23}, {600, ty3, txs}}
After step 16 the value shown by T,; is 900

Figure | Schedule for the multiversion technique.
Step Schedule Transaction T, Transaction Ty,
1 Sum := 0 Sum := 0
2 Sum:=0 Sum := 0
3 Read(A) : Read(A)
4 A:=A-100 A:=A— 100
5 Write(A) Write(A)
6 Read(A) Read(A) .,
7 Sum:=Sum + A Sum:= Sum + A
8 Read(B) Read(B)
9 Sum:=Sum + B Sum:= Sum + B
10 Show(Sum) Show(Sum)
11 Sum := Sum + A) Sum := Sum + A
12 Read(B) Read(B)
13 B:=B + 100 B:=B + 1%
14 Write(B) * Write(B)
15 Sum:= Sum + B Sum := Sum + B
16 Show(Sum) Show(Sui..)

Chapter 12 Concurrency Management

Figure 12.22 Wait-for graph showing (a) no cycle and hence no deadlock; (b) a cycle and hence a

deadlock.

been satisfied, adds the arc from the node for transaction T, to the node for trans-
action Ty, The addition of this arc causes the wait-for graph to have a number of
cycles. Onc of these cycles is indicated by the arc from transaction T,g to transaction
Tao, then, from transaction Ts to Ty, and finally from T, back to T,g. Consequently
part b represents a situation where a number of sets of transactions are deadlocked.

Since a cycle in the wait-for graph is a necessary and sufficient condition for
deadlock to exist, the deadlock detection algorithm generates the wait-for graph at
regular intervals and examines it for a chain. If the interval chosen is very small,
deadlock detection will add considerable overhead; if the interval chosen is very
large, there is a possibility that a deadlock will not be detected for a long period.
The choice of interval depends on the frequency of deadlocks and the cost of not
detecting the deadlocks for the chosen interval. The overhead of keeping the wait-
for graph continuously, adding arcs as requests are blocked and removing them as
locks are given up, would be very high.

The deadlock detection algorithm is given on page 598. In this algorithm we
use a table called Wait_for table. It contains columns for each of the following:
transaction IDs; the data-items for which they have acquired a lock; and the data-
items they are waiting for (these wait-for items are currently locked in an incompat-
ible mode by other transactions). The algorithm starts with the assumption that there
is no deadlock. It locates a transaction, T,, which is waiting for a data-item. If the
data-item is currently locked by transaction T,, the latter is in the wait-for graph. If

12.8 Deadlock and Its Resolution 597

T, in turn is waiting for a data item currently locked by transaction T,, this trans-
action is also in the wait-for graph. In-this way the algorithm finds all other trans-
actions involved 1n a wait-for graph starting with transaction I. If the algorithm
finally finds that there is a transaction T, waiting for a data-item currently locked by
T,. the wait-for graph leads back to the starting transaction. Consequently the algo-
rithra concludes that a cycle exists in the wait-for graph and there is a potential
deadlock situation.

Example 12.11 Consider the wait-for table of Figure J. The wait-for graph for the trans-
actions in this chain is given by Figure 12.22a. It has no cycles and hence
there are no deadlocks. However, if transaction T;, makes a request for
data-item C, the wait-for graph is converted into the one given in ‘Figure
12.22b. This graph has a cycle that starts at transaction Tag, goes through
transactions T3, T3;; and back to Ty, and Algorithm 12.2 detects it. There
are other cycles as well.

Figure J Wait-for table for Example 12.11.
Transaction_Id | Data_items_locked | Data_items_waiting_for
Ty, B C.A
T c.M H.G
Tao H ' D.E
T G . A
Ty A.E ‘ ()
Ty D.1 F
T F E
3 L .

An adaptive system may initially choose a fairly infrequent interval to run the
deadlock detection algorithm. Every time a deadlock is detected, the deadlock detec-
tion frequency could be increased, for example, to twice the previous frequency and
every time no deadlock is detected, the frequency could be reduced, for example, to
half the previous frequency. Of course an upper and lower limit to the frequency
would have to be established.

Recovery from Deadlock

To recover from deadlock, the cycles in the wait-tor graph must be broken. The
common method of doing this is to roll back one or more transactions in the cycles

598 Chapter 12 Concurrency Management

#
Algorithm
12.2 Deadiock Detection

Input and A table called Wait_for_Table that contains: transaction IDs, the data-items
Data they have acquired a lock on, and the data-items they are waiting for (these
Structure wait-for items are currently locked in an incompatible mode by other trans-
Used: actions). A Boolean variable Deadlock_situation. A first-in, first-out stack,
Transaction._stack, to hold transaction IDs: this stack will contain the trans-

actions in a deadlocked chain if a deadlock is detected.

Output Whether the system is deadlocked and if so, the transactions in the cycle.

Initialize Deadlock_Situation to false;

Initialize Transaction_stack to empty;

for next transaction in table while not Deadlock Situation

begin o

Push next Transaction ID into Transaction_.stack ;

for next Data_item_waiting_for of - oo
transaction on top of Transaction_stack and
, while not Deadlock_Situation.

begin
- D-next : = next Data_item_wal
find Tran_ID of trausaction whi
- if Tran_ID is in stack .
then Deadlock._Situation : = frue .
else Push Tran_ID to T jon_stm
S end
" Pop Transaction_stack

_“

until the system exhibits no further deadlock situation. The selection of the trans-
actions to be rolled back is based on the following considerations:

® The progress of the transaction and the number of data-items it has used and
modified. It is preferable to roll.back a transaction that has just started or has
not modified any data-item, rather than one that has run for a considerable time
and/or has modified many data-items.

® The amount of computing remaining for the transaction and the number of data-
iterns that have yet to be accessed by the transaction. It is preferable not to roll
back a transaction if it has almost run to completion and/or it needs very few
additional data-items before its termination.

® The relative cost of rolling back a transaction. Notwithstanding the above
considerations, it is preferable to roll back a less important or noncritical
transaction.

12.8 Deadlock and Its Resolution 599

Once the selection of the transaction to be rolled back is made, the simplest
scenario consists of rolling back the transaction to the start of the transaction, i.e.,
abort the transaction and restart it, de nouveau. If, however, additional logging is
done by the system to maintain the state of all active transactions, the rollback need
not be total, merely far enough to break the cycle indicating the deadlock situation.
‘Nonetheless, this overhead may be excessive for many applications.

The process of deadlock recovery must also ensure that a given transaction is
not continuously the one selected for rollback. If this is not avoided, the transaction
will never (or at least for a period that looks like never) complete. This is starving a
transaction!

12.8.2 Deadlock Avoidance

In the deadlock avoidance scheme, care is taken to ensure that a circular chain of
processes holding some resources and waiting for additional ones held by other trans-
actions in the chain never occurs. The two-phase locking protocol ensures serializa-
bility, but does not ensure a deadlock-free situation. This is illustrated in Example
12.12. :

Example 12.12 Consider transactions T34 and Tas given in Figure K and the schedule of
Figure L. These are two-phase transactions; however, a deadlock situation
exists in Figure L, as transaction T4 waits for a data-item held by trans-
action Tjs; later on, transaction Tss itself waits for a data-item held by T,
which is already blocked from further progress.

Figure K Two-phase transactions.
Transaction Ti4 Transaction Tss
Sum := 0 Sum := 0
Locks(A) Lockx(B)
Read(A) Read(B)
Sum := Sum + A B:= B + 100
Locks(B) Write(B)
Read(B) Sum := Sum + B
Sum := Sum + B Lockx(A)
Show(Sum) Unlock(B)
Unlock(A) Read(A)
Unlock(B) A:= A - 100
Write(A)

Show(Sum)

Chapter 12 Concurrency Management

Figure L Schedule leading to deadlock with two-phase transactions.
Schedule Transaction Tiq Transaction T
Sum .= 0 Sum .= 0
Locks(A) Locks(A)
‘ Read(A) Read(A)
Sum := Sum + A Sum:= Sum + A
T | Sum:=0 Sum := 0
i Lockx(B) Lockx(B)
m | Read(B) Read(B)
e | B:=8 + 100 B:= B + 100
Write(B) Write(B)
Sum := Sum + B Sum .= Sum + B
Locks(B) Locks(B)* transaction T, will wait
v Lockx(A) Lockx(A)* Tis will wait
|

One of the simplest methods of avoiding a deadlock situation is to lock all data-
items at the beginning of a transaction. This has to be done in an atomic manner,
otherwise there could be a deadlock situation again. The main disadvantage of this
scheme is that the degree of concurrency is lowered considerably. A transaction typ-
ically needs a given data-item for a very short interval. Locking all data-items for
the entire duration of a transaction makes these data-items inaccessible to other con-
current transactions. This could be the case even though the transaction holding a
lock on these data-items may not need them for a long time after it acquires a lock
on them.

Another approach used in avoiding deadlock is assigning an order to the data-
items and requiring the transactions to request locks in a given order, such as only
ascending order. Thus, data-items may be ordered as having rank 1, 2, 3, and so on.
A transaction T requiring data-items A (with a rank of i) and B (with a rank of j with
j > i) must first request a lock for the data-item with the lowest rank, namely A.
When it succeeds in getting the lock for A, only then can it request a lock for data-
item B. All transactions follow such a protocol, even though within the body of the
transaction the data-items are not required in the same order as the ranking of the
data-items for lock requests. This scheme reduces the concurrency, but not to
the same extent as the first scheme.

Another set of approaches to deadlock avoidance is to decide whether to wait or
abort and roll back a transaction, if a transaction finds that the data-item it requests
is locked in an incompatible mode by another transaction. The decision is controlled
by timestamp values. Aborted and rolled back transactions retain their timestamp
values and hence their ‘‘seniority.’’ So, in subsequent situations, they would even-
tually get a ‘‘higher priority.”” We examine below two such approaches called wait-
die and wound-wait.

